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Abstract. We present a scalable approach and implementation for solving stochastic optimization problems on
high-performance computers. In this work we revisit the sparse linear algebra computations of the parallel solver
PIPS with the goal of improving the shared-memory performance and decreasing the time to solution. These com-
putations consist of solving sparse linear systems with multiple sparse right-hand sides and are needed in our Schur-
complement decomposition approach to compute the contribution of each scenario to the Schur matrix. Our novel
approach uses an incomplete augmented factorization implemented within the PARDISO linear solver and an outer
BiCGStab iteration to efficiently absorb pivot perturbations occurring during factorization. This approach is capable
of both efficiently using the cores inside a computational node and exploiting sparsity of the right-hand sides. We
report on the performance of the approach on high-performance computers when solving stochastic unit commit-
ment problems of unprecedented size (billions of variables and constraints) that arise in the optimization and control
of electrical power grids. Our numerical experiments suggest that supercomputers can be efficiently used to solve
power grid stochastic optimization problems with thousands of scenarios under the strict “real-time” requirements
of power grid operators. To our knowledge, this has not been possible prior to present work.

1. Introduction. In this paper, we present novel linear algebra developments for the
solution of linear systems arising in interior-point methods for the solution of structured op-
timization problems of the form

min
xi,i=0,...,N
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xT
0 Q0x0 + cT

0 x0

)
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N

N

∑
i=1
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i xi

)
s.t. T0x0 = b0,

T1x0+ W1x1 = b1,
T2x0+ W2x2 = b2,
...

. . .
...

TNx0+ WNxN = bN ,
x0 ≥ 0, x1 ≥ 0 ,x2 ≥ 0, . . . xN ≥ 0.

(1.1)

Optimization problems of the form (1.1) are known as convex quadratic optimization
problems with dual block-angular structure. Such problems arise as the extensive form in
stochastic optimization, being either deterministic equivalents or sample average approxima-
tions (SAAs) of two-stage stochastic optimization problems with recourse [34]. Two-stage
stochastic optimization problems are formulated as

min
x

(
1
2

xT
0 Q0x+ cT x0

)
+Eξ [G(x0,ξ )]

s.t. T0x0 = b0,x0 ≥ 0,
(1.2)
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where the recourse function G(x0,ξ ) is defined by

G(x0,ξ ) = min
x

1
2

xT Qξ x+ cT
ξ

x

s.t. Tξ x0 +Wξ x = bξ ,x≥ 0.
(1.3)

The expected value E[·], which is assumed to be well defined, is taken with respect to the
random variable ξ , which contains the data (Qξ ,cξ ,Tξ ,Wξ ,bξ ). The SAA problem (1.1) is
obtained by generating N samples (Qi,ci,Ti,Wi,bi) of ξ and replacing the expectation op-
erator with the sample average. The matrix Qξ is assumed to be positive semidefinite for
all possible ξ . Wξ , the recourse matrix, is assumed to have full row rank. Tξ , the tech-
nology matrix, need not have full rank. The deterministic matrices Q0 and T0 are assumed
to be positive semidefinite and of full row rank, respectively. The variable x0 is called the
first-stage decision, which is a decision to be made now. The second-stage decision x is a
recourse or corrective decision that one makes in the future after some random event occurs.
The stochastic optimization problem finds the optimal decision to be made now that has the
minimal expected cost in the future.

Stochastic optimization is one of the main sources of extremely large dual block-angular
problems. SAA problems having billions of variables can be easily obtained in cases when
a large number of samples is needed to accurately capture the uncertainties. Such instances
necessitate the use distributed-memory parallel computers. Dual block-angular optimization
problems are also natural candidates for decomposition techniques that take advantage of
the special structure. Existing parallel decomposition procedures for the solution of dual
angular problems are reviewed by Vladimirou and Zenios [37]. Subsequent to their review,
Linderoth and Wright [17] developed an asynchronous approach combining l∞ trust regions
with Benders decomposition on a large computational grid. Decomposition inside standard
optimization techniques applied to the extensive form has been implemented in the state-of-
the-art software package OOPS [11] as well as by some of the authors in PIPS-IPM [19, 20,
24] and PIPS-S [18]. OOPS and PIPS-IPM implement interior-point algorithms and PIPS-
S implements the revised simplex method. The decomposition is obtained by specializing
linear algebra to take advantage of the dual block-angular structure of the problems.

This paper revisits linear algebra techniques specific to interior-point methods applied to
optimization problems with dual block-angular structure. Decomposition of linear algebra in-
side interior-point methods is obtained by applying a Schur complement technique (presented
in Section 3). The Schur complement approach requires at each iteration of the interior-point
method solving a dense linear system (the Schur complement) and a substantial number of
sparse linear systems for each scenario (needed to compute each scenario’s contribution to
the Schur complement). For a given scenario, the sparse systems of equations share the same
matrix, a situation described in the linear algebra community as solving linear systems with
multiple right-hand sides. The number of the right-hand sides is large relative to the number
of the unknowns or equations for many stochastic optimization problems, which is unusual in
traditional linear algebra practices. Additionally, the right-hand sides are extremely sparse, a
feature that should be exploited to reduce the number of floating-point operations.

The classical Schur complement approach is very popular not only in the optimization
community [11], but also in domain decomposition [8, 14, 15, 16, 27, 28, 29] and parallel
threshold-based incomplete factorizations [26, 27, 28, 41] of sparse matrices. A complete list
of applications is virtually impossible because of its popularity and extensive use. Previously,
we followed the classical path in PIPS-IPM and computed the exact Schur complement by
using off-the-shelf linear solvers, such as MA57 and WSMP, and solved for each right-hand
side (in fact for small blocks of right-hand sides). However, this approach has two important
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drawbacks: (1) the sparsity of the right-hand sides is not exploited, sparse right-hand sides
being a rare feature of linear solvers; and (2) the calculations limit the efficient use of multi-
core shared-memory environments because it is well known that the triangular solves do not
scale well with the number of cores [13].

Here, we develop a fast and parallel reformulation of the sparse linear algebra calcula-
tions that circumvents the issues in the Schur complement presented in the previous para-
graph. The idea is to leverage the good scalability of parallel factorizations as an alternative
method of building the Schur complement. We employ an incomplete augmented factor-
ization technique that solves the sparse linear systems with multiple right-hand sides at once
using an incomplete sparse factorization of an auxiliary matrix. This auxiliary matrix is based
on the original matrix augmented with the right-hand sides. In this paper, we also concen-
trate both on the node and inter-node level parallelism. Previous Schur/hybrid solvers all
solve the global problem iteratively while our approach instead complements existing direct
Schur complement methods and implementations. In our application, the interior-point sys-
tems are indefinite and require advanced pivoting and sophisticated solution refinement based
on preconditioned BiCGStab in order to maintain numerical stability. In addition, BiCGStab
method is needed to cheaply absorb the pivot perturbations that occur from the factorization.

These new algorithmic developments and their implementation details in PARDISO and
PIPS-IPM are presented in Section 3. In Section 4 we study the large-scale computational
performance and parallel efficiency on different high-performance computing platforms when
solving stochastic optimization problems of up to 2 billion variables and up to almost 2 billion
constraints. Such problems arise in the optimization of the electrical power grid and are de-
scribed in Section 2. We also discuss in this section the impact of this work on the operational
side of the power grid management.

Notation and terminology Lower-case Latin characters are used for vectors, and upper-
case Latin characters are used for matrices. Lower-case Greek characters denote scalars.
Borrowing the terminology from stochastic optimization, we refer to the zero-indexed vari-
ables or matrices of problem (1.1) as “first stage,” the rest as “second stage.” By a scenario i
(i = 1, . . . ,N) we mean the first-stage data (Q0, c0 and T0) and second-stage data Qi, ci, Ti and
Wi. Unless stated otherwise, lower indexing of a vector indicates the first-stage or second-
stage part of the vector (not its components). Matrices Q and A are a compact representation
of the quadratic term of the objective and of the constraints:

Q =


Q0

Q1
. . .

QN

 , and A =


T0
T1 W1
...

. . .
TN WN

 .
2. Motivating Application: Stochastic Unit Commitment for Power Grid Systems.

Today’s power grid will require significant changes in order to handle increased levels of re-
newable sources of energy; these sources, such as wind and solar, are fundamentally different
from traditional generation methods because they cannot be switched on at will. Instead, their
output depends on the weather and may be highly variable within short time periods. Fig-
ure 2.1 illustrates the magnitude and frequency of wind supply fluctuations under hypothetical
adoption levels compared with a typical total load profile in Illinois. Uncertainty in weather
forecasts and other risks such as generator and transmission line failure are currently miti-
gated by using conservative reserve levels, which typically require extra physical generators
operating so that their generation levels may be increased on short notice. Such reserves can
be both economically and environmentally costly. Additionally, inevitable deviations from
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output levels estimated by weather forecasts can lead to inefficiencies in electricity markets
manifested as wide spatiotemporal variations of prices (see Figure 2.2).

Stochastic optimization has been identified in a number of studies as a promising math-
ematical approach for treating such uncertainties in order to reduce reserve requirements and
stabilize electricity markets in the next-generation power grid [2, 5, 25]. Constantinescu et
al. [5] made the important empirical observation that while reality may deviate significantly
from any single weather forecast, a suitably generated family of forecasts using numerical
weather prediction and statistical models can capture spatiotemporal variations of weather
over wide geographical regions. Such a family of forecasts naturally fits within the paradigm
of stochastic optimization when considered as samples (scenarios) from a distribution on
weather outcomes.

Computational challenges, however, remain a significant bottleneck and barrier to real-
world implementation of stochastic optimization of energy systems. This paper is the latest
in a line of work [20, 19, 24] intended to address these challenges by judicious use of linear
algebra and parallel computing within interior-point methods.
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FIG. 2.1. Snapshot of total load and wind supply variability at different adoption levels.

Power-grid operators (ISOs) solve two important classes of optimization problems as part
of everyday operations; these are unit commitment (UC) and economic dispatch (ED) [33].
UC decides the optimal on/off schedule of thermal (coal, nuclear) generators over a horizon of
24 hours or longer (California currently uses 72-hour horizons). This is a nonconvex problem
that is typically formulated as a mixed-integer linear optimization problem and solved by
using commercial software [35]. In practice, a near-optimal solution to the UC problem must
be computed within an hour.

In our analysis, we consider a two-stage stochastic optimization formulation for unit
commitment. The problem has the following structure (c.f. [20], see [3, 2, 33] for more
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FIG. 2.2. Snapshot of the price distribution across the state of Illinois under deterministic (left) and stochastic
(right) formulations. We note more uniform prices in the interior of the state under stochastic optimization, as this
approach enables the anticipation of uncertainties. Transmission grid is also shown. Figures credit Victor Zavala.

details):

min

(
T

∑
k=0

∑
j∈G

f j · xk, j

)
+

1
N ∑

s∈N

(
T

∑
k=0

∑
j∈G

c j ·Gs,k, j

)
(2.1a)

s.t. Gs,k+1, j = Gs,k, j +∆Gs,k, j, s ∈N ,k ∈T , j ∈ G (2.1b)

∑
(i, j)∈L j

Ps,k,i, j + ∑
i∈G j

Gs,k,i = ∑
i∈D j

Ds,k,i

− ∑
i∈W j

Ws,k,i, s ∈N ,k ∈T , j ∈B (ps,k, j) (2.1c)

Ps,k,i, j = bi, j(θs,k,i−θs,k, j), s ∈N ,k ∈T ,(i, j) ∈L (2.1d)
0≤ Gs,k, j ≤ xk, jGmax

j , s ∈N ,k ∈T , j ∈ G (2.1e)

|∆Gs,k, j| ≤ ∆Gmax
j , s ∈N ,k ∈T , j ∈ G (2.1f)

|Ps,k,i, j| ≤ Pmax
i, j , s ∈N ,k ∈T ,(i, j) ∈L (2.1g)

|θs,k, j| ≤ θ
max
j , s ∈N ,k ∈T , j ∈B (2.1h)

xk, j ∈ {0,1}, k ∈T , j ∈ G (2.1i)

Here, G ,L , and B are the sets of generators, lines, and transmission nodes (intersections
of lines, known as buses) in the network in the geographical region, respectively. D j and
W j are the sets of demand and wind-supply nodes connected to bus j, respectively. The
symbol N denotes the set of scenarios for wind level and demand over the time horizon
T := {0, ...,T}. The first stage decision variables are the generator on/off states xk, j over
the complete time horizon. The decision variables in each second-stage scenario s are the
generator supply levels Gs,k, j for time instant k, and bus j, the transmission line power flows
Ps,k, j, and the bus angles θs,k, j (which are related to the phase of the current). The random
data in each scenario are the wind supply flows Ws,k,i and the demand levels Ds,k,i across the
network. The values of Gs,0, j and x0, j are fixed by initial conditions.
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Constraints (2.1c) and (2.1d) balance the power flow across the network according to
Kirchoff’s current law and grid’s physical network, and are known as direct current (DC)
power flow equations. DC power flow equations are linear approximations of the highly non-
linear power flow equations for alternative currents and are used to keep the simulation and
optimization of large power systems computationally tractable [4, 23]. Constraints (2.1f)
are the so-called ramp constraints that restrict how quickly generation levels can change.
The objective function contains the fixed costs f j for operating a generator and the generation
costs c j. Generation costs are convex and are more accurately modeled as quadratic, although
in practice they are treated as linear and piecewise linear functions for simplicity. Our solver
is equally capable of handling both cases, but in our test problems we used the linear form.

Note that the scenarios are coupled only by the constraint (2.1e), which enforces that the
generation level in each scenario be zero if the generator is off at a particular time. Under
this model, the on/off states are chosen such that (1) under each scenario, there is a feasi-
ble generation schedule, and (2) the (approximate) expected value of the generation costs is
minimized.

In this work, we consider solving a convex relaxation of (2.1) obtained by replacing the
binary restrictions (2.1i) with the constraints 0 ≤ xk, j ≤ 1. This relaxation is a linear opti-
mization problem that would be solved at the “root node” of branch-and-bound approaches
for solving (2.1). Empirically, deterministic UC problems have been observed to have a small
gap between the optimal value of the convex relaxation and the true optimal solution when
combined with cutting-plane techniques and feasibility heuristics, which are standard practice
in mixed-integer optimization. This often implies that a sufficiently small gap is obtainable
with little or no enumeration of the branch-and-bound tree [35]. Our future work will be
devoted to implementing and developing such techniques and heuristics for stochastic UC
formulations.

Even without any additional work, one can estimate an upper bound on the optimality
gap between the relaxation and the nonconvex mixed-integer solution. Note that in the given
formulation, the generator states xk, j in a feasible solution to the convex relaxation may be
“rounded up” to 1 to obtain a feasible solution to the nonconvex problem. By rounding, we
increase the objective value by at most T ∑ j∈G f j, which, because of the technological char-
acteristics of the thermal units, is empirically smaller than the contribution to the objective
from the generation costs c j. We therefore conservatively expect an increase in the objective
by at most 50%, providing us with a optimality gap. Intuitively, the convex part of the prob-
lem (generation costs) contributes a more significant proportion of the objective value than
the nonconvex part (fixed costs).

We believe it is reasonable, therefore, to first focus our efforts on the computational
tractability of the convex relaxation. Our developments apply directly to stochastic ED for-
mations as well.

The convex relaxation of (2.1) itself is an extremely large-scale linear optimization prob-
lem. Our model incorporates the transmission network of the state of Illinois, which contains
approximately 2,000 transmission nodes, 2,500 transmission lines, 900 demand nodes, and
300 generation nodes (illustrated in Figure 2.2). A deterministic formulation over this geo-
graphical region can have as many as 100,000 variables and constraints since the network
constraints are imposed separately for each time period. In our stochastic formulation, this
number of variables and constraints is effectively multiplied by the number of scenarios. As
scenarios effectively correspond to samples in a high-dimensional Monte-Carlo integration,
it is reasonable to desire the capability to use thousands if not tens of thousands; hence total
problem sizes of tens to hundreds of millions of variables, which are presently far beyond
the capabilities of commercial solvers, are easily obtainable. The number of variables in the
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first-stage block x0 is the number of generators times the number of time steps, leading to
sizes of 10,000 or more, which makes parallel decomposition non-trivial.

3. Computational Approach and Implementation. In this section we first provide a
compact presentation of the Mehrotra’s primal-dual path-following algorithm and the Schur
complement-based decomposition of the linear algebra from PIPS-IPM. After that we present
the novel approach for computing the Schur complement.

3.1. Interior-point method. Let us consider a general form of a quadratic programming
(QP) problem:

min
1
2

xT Qx+ cT x subject to Ax = b, x≥ 0. (3.1)

We consider only convex QPs (Q needs to be positive semi-definite) and linear programming
(LP) problems (Q = 0). Additionally, the matrix A is assumed to have full row rank. Observe
that stochastic programming problem (1.1) is a convex QP.

Path-following interior-point methods for the solution of problem (3.1) make use of the
“central path,” which is a continuous curve (x(µ),y(µ),z(µ)), µ > 0, satisfying

Qx−AT y− z = −c,
Ax = b,
xz = µe,

x,z > 0.

(3.2)

Here y∈Rm and z∈Rn correspond to the Lagrange multipliers, e= [ 1 1 . . . 1 ]T ∈Rn,
and xz denotes the componentwise product.

In the case of a feasible problem (3.1), the above system has a unique solution (x(µ),y(µ),
z(µ)) for any µ > 0, and, as µ approaches zero, (x(µ),y(µ),z(µ)) approaches a solution of
(3.1), see Chapter 2 in [40]. A path-following method is an iterative numerical process that
follows the central path in the direction of decreasing µ toward the solution set of the prob-
lem. The iterates generated by the method generally do not stay on the central path. Rather,
they are located in a controlled neighborhood of the central path that is a subset of the positive
orthant.

In the past two decades, predictor-corrector methods have emerged as practical path-
following IPMs in solving linear and quadratic programming problems. Among the predictor-
corrector methods, the most successful is Mehrotra’s predictor-corrector algorithm. Although
Mehrotra [22] presented his algorithm in the context of linear programming, it has been suc-
cessfully applied also to convex quadratic programming [9] and standard monotone linear
complementarity problems [42]. It also has been widely used in the implementation of sev-
eral IPM-based optimization packages, including OB1 [21], HOPDM [10], PCx [6], LIPSOL
[43], and OOQP [9].

Two linear systems of the form (3.4) are solved at each IPM iteration one to compute
predictor search direction and one to compute corrector search directions. For a detailed
description of Mehrotra’s method used in this paper we refer the reader to [9] and [22, 40].
Let us denote the kth IPM iteration by (xk,yk,zk). Also let Xk and Zk denote the diagonal
matrices with the (positive) entries given by xk and zk. The linear system solved during both
the predictor and corrector phase to obtain the search direction (∆xk,∆yk,∆zk) is

Q∆xk−AT
∆yk −∆zk = r1

k (3.3)

A∆xk = r2
k (3.4)

Zk∆xk +Xk∆zk = r3
k (3.5)
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While the right-hand sides r1
k , r2

k , and r3
k are different for the predictor and the corrector, the

matrix remains the same (this feature of the Mehrotra’s algorithm gives important computa-
tional savings, since only one factorization, not two, per IPM iteration is required).

By performing block elimination for ∆zk, the linear systems (3.4) can be reduced to the
following symmetric indefinite linear system,[

Q+D2
k AT

A 0

][
∆xk
−∆yk

]
=

[
r1

k +X−1
k r3

k
r2

k

]
, (3.6)

where Dk = X
− 1

2
k Z

1
2
k .

Factorizing the matrix of system (3.6) and then solving twice with the factors accounts
for most of the computational effort of each interior-point iteration. Section 3.2 present the al-
gorithmic and implementation details of performing these operations in parallel for stochastic
optimization problems.

The remaining fraction of the computations is required by the computations the residu-
als of (3.6) (mat-vec operations Qx, Ax, and AT y), linesearch and iteration updates (vec-vec
operations x = x+α∆x), as well as stopping criteria (vector norms). In PIPS we exploit the
special structure of the problem data to distribute both the data and all computations across
computational nodes. Data distribution is done by partitioning the scenarios and assigning
a partition to each computational node (partitions have an equal or close to equal number of
scenarios in order to avoid load imbalance). The first-stage data (Q0, T0) and variables (x0,
y0) are replicated across nodes in order to avoid extra communication. Mat-vecs Qx, Ax and
AT y can be efficiently parallelized for stochastic optimization. For example r = Qx can be
done without communication since Q is block diagonal, each node computing r0 = Q0r0 and
ri = Qixi (i≥ 1) for scenarios i that were assigned to it. The mat-vec r = Ax also requires no
communication; each node computes r0 = T0x0 and ri = Tix0 +Wixi. For the mat-vec

r = AT y =


T T

0 y0 +∑
N
i=1 T T

i yi
W T

1 y1
· · ·

W T
N yN

 ,
each node n computes ri = W T

i yi and r̃n
0 = ∑i T T

i yi for each of its scenarios i and performs
an “all-reduce” communication to sum r̃n

0 across nodes and calculate r0 = T T
0 y0 +∑

N
i=1 T T

i yi.
The vec-vec operations are parallelized in a similar way. The same approach is used in OOPS;
we refer the reader to [11] for a detailed description.

3.2. Linear algebra overview. In PIPS-IPM we exploit the arrow-shaped structure of
the optimization problem (1.1) to produce highly parallelizable linear algebra. The linear
system that is solved at each IPM iteration can be reordered in the primal-dual angular form

K :=


K1 B1

. . .
...

KN BN
BT

1 . . . BT
N K0

 , (3.7)

where K0 =

[
Q0 +D0 T T

0
T0 0

]
, Ki =

[
Qi +Di W T

i
Wi 0

]
and Bi =

[
0 0
Ti 0

]
, i = 1, . . . ,N.

D0, D1, . . ., DN are diagonal matrices with positive entries arising from the use of interior-
point methods and change at each IPM iteration.
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It is well known in the linear algebra community that primal-dual angular linear systems
of the form (3.7) can be parallelized by using a Schur complement technique. We follow the
same approach in PIPS-IPM and present it here for completeness. By performing a block
Gaussian elimination of the bordering blocks, one can solve the linear system (3.7) by

I. computing the Schur complement

C = K0−
N

∑
i=1

BT
i K−1

i Bi; (3.8)

II. solving Schur linear system

C∆z0 = r0−
N

∑
i=1

BT
i K−1

i ri; (3.9)

III. solving second-stage linear systems (i = 1, . . . ,N)

Ki∆zi = Bi∆z0− ri. (3.10)

Most of the computations – in particular, obtaining the scenarios contributions BT
i K−1

i Bi
to the Schur complement, computing the residual in step II and solving for ∆zi – can be
performed independently, yielding an efficient parallelization scheme. However, solving with
the dense Schur complement C in step II may be a parallelization bottleneck for problems
having a large number of first-stage variables. The bottleneck can be overcome by distributing
C and solving the Schur complement linear systems in parallel [19]. By default, PIPS-IPM
uses LAPACK and multithreaded BLAS to factorize and solve with C on each node.

Algorithm 1 lists the parallel procedure we use in PIPS-IPM to solve K∆z = r using the
Schur complement-based decomposition scheme (3.8)-(3.10). The verb “reduce” refers to the
communication operation that combines data held by different processes through an associa-
tive operator, in our case summation, and accumulates the result on a single process (reduce)
or on all processes (all-reduce). MPI routines MPI Reduce and MPI Allreduce correspond
to these operations. A different communication strategy is also available in PIPS-IPM. In-
stead of all-reducing C in step 3 and replicating the factorization in step 4 on all nodes, one
could only reduce C to process 1 and perform the factorization on process 1 only. Conse-
quently, in step 6 v0 is reduced only to process 1, which then performs step 7 and broadcasts
(MPI Bcast) v0 to the rest of the processes. In theory this communication pattern should
be faster than the one of Algorithm 1, especially since the most expensive communication,
all-reducing C, is avoided. However, it is slower on “Intrepid” BG/P because all-reduce is
about two times faster than reduce (this anomaly is likely to be caused by an implementation
problem of BG/P’s MPI Reduce or lack of optimization).

The computation of the Schur complement (step 2 of Algorithm 1) was by far the most
expensive operation and it was traditionally done in PIPS-IPM [20] by solving with the fac-
tors of Ki for each nonzero column of Bi and multiplying the result from the left with BT

i .
A slightly different approach is to apply a primal-dual regularization [1] to the optimiza-
tion problem to obtain quasidefinite matrices Ki that are strongly factorizable to a form of
Cholesky-like factorization Ki = LiLT

i and to compute BT
i K−1

i Bi as sparse outer products of
L−1

i BT
i . This approach is implemented in OOPS [11]. In both cases, the computational bur-

den is on solving with sparse factors (i.e., triangular solves) of Ki against multiple sparse
right-hand sides.

This “triangular solve” approach is very popular, see [8, 14, 15, 26, 41] as the most
recent papers on this parallelization based on incomplete Schur complements. Some of the

9



Algorithm 1
Solving K∆z = r in parallel based on the Schur complement decomposition (3.8)-(3.10)

Given the set P = {1,2, . . . ,P} processes, distribute N scenarios evenly across P
and let Np be the set of scenarios assigned to process p ∈P .
Each process p ∈P executes the following procedures:

(factorization phase)
Function (L1,D1, . . . ,LN ,DN ,LC,DC)=Factorize(K)
1. Factorize LiDiLT

i = Ki for each i ∈Np.

2. Compute SC contribution Si = BT
i K−1

i Bi for each i ∈Np and accumulate
Cp =− ∑

i∈Np

Si. On process 1, let C1 =C1 +K0.

3. All-reduce SC matrix C = ∑
r∈P

Cr.

4. Factorize SC matrix LcDcLT
c =C;

(solve phase)
Function ∆z=Solve(L1,D1, . . . ,LN ,DN ,LC,DC,r)
5. Solve wi = K−1

i ri = L−T
i D−1

i L−1
i ri for each i ∈Np and compute vp = ∑

i∈Np

BT
i wi.

On process 1, let v1 = v1 + r0.

6. All-reduce v0 = ∑
i∈Np

vi.

7. Solve ∆z0 =C−1v0 = L−T
c D−1

c L−1
c v0.

8. Solve ∆zi = K−1
i (Bi∆z0− ri) = L−T

i D−1
i L−1

i (Bi∆z0− ri) for each i ∈Np.

papers recognize that the triangular solve approach is the limitation in the computation of the
Schur complement and focus on overcoming it; for example, in [41] the authors try to exploit
sparsity during the triangular solves (with no reference to multithreading), while the authors
of [26] are concerned in [39] with the multithreaded performance of the sparse triangular
solves.

3.3. Computing BT
i K−1

i Bi using the augmented approach. In many computational
science applications, the numerical factorization phase Ki = LiDiLi of forming the partial
Schur-complement contributions Si = BT

i K−1
i Bi has generally received the most attention,

because it is typically the largest component of execution time; most of the algorithmic im-
provements [7, 30, 32] in the factorization are related to the exploitation of the sparsity struc-
ture in Ki. In PIPS-IPM, however, the solve step K−1

i Bi dominates and is responsible for a
much higher proportion of the memory traffic. This makes it a bottleneck in PIPS-IPM on
multicore architectures that have a higher ratio of computational power to memory bandwidth.

The multicore architectures that emerged in recent years brought substantial increases in
the number of processor cores and their clock rates but only limited increases in the speed and
bandwidth of the main memory. For this reason, in many application codes processor cores
spend considerable time in accessing memory, causing a performance bottleneck known the
“memory bandwidth wall”. This adverse behavior is likely to be aggravated by the advent of
many-core architectures (having hundreds of cores per chip), because it is expected that the
speed and bandwidth of the memory will virtually remain unchanged.

In our computational approach, the memory bandwidth wall occurs when solving with
the factors of Ki. This is because triangular solves are known to parallelize poorly on mul-

10



ticore machines [13]. In PIPS-IPM the number of the right-hand sides can be considerably
large (for some problems Bi has more than 10,000 columns), and most of the execution time
is spent in solving with the factors of Ki, causing an inefficient utilization of the cores for
most of the time. Even more important, the right-hand sides Bi are very sparse, a feature
that can considerably reduce the number of arithmetic operations. However, exploiting the
sparsity of the right-hand sides during the triangular solve increases the memory traffic and
exacerbates the memory bandwidth wall.

On the other hand, indefinite sparse factorizations can achieve good speed-ups on multi-
cores machines [31, 13]. We propose an augmented factorization-based technique for com-
puting BT

i K−1
i Bi. Our approach consists of performing a partial factorization of the aug-

mented matrix

Mi =

[
Ki BT

i
Bi 0

]
. (3.11)

More specifically, the factorization of the augmented matrix is stopped after the first ki pivots
(ki being the dimension of Ki). At this point in the factorization process, the lower right block
of the factorization contains the exact Schur complement matrix −BT

i K−1
i Bi.

The Schur complement matrix is defined with the help of a block LU factorization

A =

(
Ki BT

i
Bi A22

)
:=
(

L11 0
L21 L22

)(
U11 U12

0 U22

)
, (3.12)

L11 lower triangular, U11 upper triangular and

L22U22 = A22−BT
i U−1

11 L−1
11 Bi = A22−BT

i K−1
i Bi = S(Ki) := S. (3.13)

Hence, halting the factorization before factorizing the bottom-right block L22U22 pro-
duces the Schur complement matrix S. Equation (3.13) is well-known but is hardly exploited
in state-of-the art direct solvers packages, whereas it has been used in [16] to construct an
incomplete LU (ILU) approximation of S. Most modern sparse direct linear solvers intro-
duce the solution of blocked sparse right hand sides to compute explicit Schur complements
for applications of interest or replace it by approximations (see, e.g., [26, 27, 28, 41]). The
use of these alternative, less efficient approaches, may be explained by the focus on solving
linear systems Ax = b in a black-box fashion, whereas computing the Schur complement by
Equation (3.13) requires modifying the factorization procedure.

The implicit assumptions used in (3.13) are: A and Ki are nonsingular matrices and it
is sufficient to restrict pivoting to Ki. Furthermore, one can assume that Ki is irreducible,
hence S is dense, because K−1

i is a dense matrix and A is nonsingular, otherwise one should
solve each irreducible block of Ki. Within these assumptions a sparse direct factorization can
perform the Schur complement computation easily by skipping the pivoting and elimination
involving elements of S.

To find an accurate solution during the Gaussian block elimination process we need to
find a permutation matrix P that minimizes fill-in and avoids small pivots during the factor-
ization [32]. Two options are available. The first possible permutation Pa can be constructed
from A with the constraint that no element of A22 = 0 is permuted out of the (2,2) block (but
Bi and BT

i can influence the ordering of Ki). The alternative option is to find a permutation
Pb based on Ki and to extend the permutation with an identity in the second block. Hence
computing a predefined Schur complement introduces a constraint on P anyway. Because we
are not aware of good algorithms for computing Pa, we use the second option P(Ki) = Pb as
a straightforward solution. The fill-in disadvantage with respect to P(A) can be verified by
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executing a symbolic factorization phase of A and comparing the size of L and U with that
of the Schur complement computation. For the given permutation the sparse factorization
does exactly what it should do: it is taking care of the necessary operations with the non-zero
elements in an efficient, dense matrix blocked approach.

In our application, the diagonal blocks Ki have saddle-point structure, hence small per-
turbed pivots cannot be excluded with the pivoting extensions available in PARDISO. These
pivoting strategies are mainly based on graph-matching Bunch-Kaufman pivoting that trades
fill-in versus stability to make efficient parallelization possible [32]. While the solution re-
finement is discussed in the next section in detail, the new Schur complement option can be
used to restrict the permutation gradually (permuting selected equations from the zero block
to the end) up to preserving the saddle-point structure by specifying A22 to be the complete
zero-bock.

3.4. Solution refinement. The factorization of Mi is based on a static Bunch-Kaufman
pivoting developed in [31] and implemented in the solver PARDISO [32]. A similar approach
is available as an option in WSMP [12]. In this case, the coefficient matrix is perturbed
whenever numerically acceptable 1× 1 and 2× 2 pivots cannot be found within a diagonal
supernode block (checks on potential pivots are made only within the supernode block). The
perturbations are not large in magnitude, being order of the machine precision; however,
the number of perturbed pivots can range from O(1) at the beginning of the optimization to
O(104) when the solution is reached. This method has been shown to perform well in many
applications. A downside of the pivot perturbation that is not negligible is that solving with
Ki might require an increased number of refinement steps to achieve the requested accuracy
in the interior-point optimization algorithm [32].

In our case the pivot perturbations during the factorization of Ki also propagate in Si =
BT

i K−1
i Bi. Absorbing these perturbations through iterative refinement [38] requires solving

with Ki for each column of Bi, an operation that we wanted to avoid in the first place. Instead,
we let the perturbations propagate through the factorization phase in the Schur complement
C. At the end of the factorization phase of Algorithm 1 we have an implicit factorization of a
perturbed matrix

K̃ :=


K̃1 B1

. . .
...

K̃N BN
BT

1 . . . BT
N K0

 , (3.14)

where K̃i, i = 1, . . . ,N, denote the perturbed matrices that were factorized during the (incom-
plete) factorization of Mi.

It is essential that the solve phase accounts for and absorbs the perturbations; otherwise
the interior-point directions are inaccurate, and the optimization stalls. Our first approach was
to perform iterative refinement for K∆z = r; however, this technique showed a large variabil-
ity in the number of steps. In comparison, the bi-conjugate gradient stabilized (BiCGStab)
method [36] proved to be more robust, seemingly able to handle a larger number of pertur-
bations more efficiently than iterative refinement. BiCGStab is a Krylov subspace method
that solves unsymmetric systems of equations and was designed as a numerically stable vari-
ant of the bi-conjugate gradient method. For symmetric indefinite linear systems such as
ours, BiCGStab also outperforms classical conjugate gradient method in terms of numerical
stability.

As any other Krylov subspace method, the performance of BiCGStab strongly depends
on the use of a preconditioner and on the quality of the preconditioner. Since K̃ is a pertur-
bation of K, the obvious choice for the preconditioner in our case is K̃−1.
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Algorithm 2
Solving a linear system Kz = b using preconditioned BiCGStab, with the precon-
ditioner K̃ being applied from the right. Implicit factorization of K̃ is provided as
input. Here zi denotes the ith iterate of the algorithm.

Function z = BiCGStabSolve(K, L̃1, D̃1, . . . , L̃N , D̃N , L̃C, D̃C,b)
Compute initial guess z0 =Solve(L̃1, D̃1, . . . , L̃N , D̃N , L̃C, D̃C,b)
Compute initial residual r0 = b−Kz0.
Let r̃0 be an arbitrary vector such that r̃T

0 r0 6= 0 (for example r̃0 = r0).
ρ0 = α = ω0 = 1; v0 = p0 = 0.

For i = 1,2, . . .

ρi = r̃T
0 ri−1; β = (ρi/ρi−1)(α/ωi−1).

pi = ri−1 +β (pi−1−ωi−1vi−1).
(preconditioner application y = K̃−1 pi)
y =Solve(L̃1, D̃1, . . . , L̃N , D̃N , L̃C, D̃C, pi).
(matrix application)
v = Ky;
α = ρi/(r̃0,vi);
s = ri−1−αvi;
zi = zi−1 +αy;
If ‖s‖ is small enough then return zi if ‖Kzi−b‖ is small enough;
(preconditioner application w = K̃−1s)
w =Solve(L̃1, D̃1, . . . , L̃N , D̃N , L̃C, D̃C,s)
(matrix application)
t = Kw;
ωi = (tT s)/(tT t);
zi = zi +ωiw;
If ‖w‖ is small enough then return zi if ‖Kzi−b‖ is small enough;
ri = s−ωit;

end

Alternatively, one could absorb the errors by performing iterative refinement indepen-
dently when solving the Schur linear system C∆z0 = v0 (step 7 in Algorithm 1) and the
second-stage linear systems (steps 5 and 8 in Algorithm 1). Additionally, the multiplication
with the error-free matrix C needed at each refinement iteration when the residual is computed
needs to be done based on Equation (3.8) and requires additional second-stage linear solves.
We have tested this technique and discarded it because of considerable load imbalance caused
by different numbers of iterative refinement iterations in the second-stage solves.

Algorithm 2 lists the preconditioned BiCGStab algorithm. All vector operations (dot-
products, addition, and scalar multiplications) are performed in parallel (no communication
occurs since the first-stage part of the vectors is replicated across all processes). The multipli-
cation v=Kz is also performed in parallel; the only communication required is in forming the
vector vector v0 = ∑

N
i=1 BT

i zi+K0z0. The application of the preconditioner, that is, computing
y = K̃−1v, is the most computationally expensive part and is done by calling the Solve func-
tion listed in Algorithm 1. Factors L̃1,D̃1, . . ., L̃N ,D̃N ,L̃C,D̃C of K̃ are obtained by calling the
Factorize function of Algorithm 1 before the BiCGStab iteration starts. The complete com-
putational procedure of solving the linear system with BiCGStab is summarized in Algorithm
3.
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Algorithm 3
Solving K∆z = r in parallel with BiCGStab using K̃ as preconditioner

Given the set P = {1,2, . . . ,P} processes, distribute N scenarios evenly
across P and let Np be the set of scenarios assigned to process p ∈P .

Each process p ∈P executes:

(preconditioner computation)
(L̃1, D̃1, . . . , L̃N , D̃N , L̃C, D̃C)=Factorize(K̃)

(BiCGStab solve phase)
∆z = BiCGStabSolve(K, L̃1, D̃1, . . . , L̃N , D̃N , L̃C, D̃C,r).

4. Numerical Experiments. In this section we report the parallel performance and ef-
ficiency of PIPS-IPM equipped with the PARDISO implementation of the augmented ap-
proach.

4.1. Experimental testbed. Before moving on to the parallel scalability benchmarks
of the stochastic optimization application, we briefly describe the target hardware, namely, a
IBM BG/P at the Argonne Leadership Computing Facility (ALCF) and a Cray XE6 system
installed at the Swiss National Supercomputing Center CSCS.

Large-scale runs were performed on the “Intrepid” BG/P supercomputer that has 40 racks
with a total 40,960 nodes and a high-performance interconnect. Small-scale experiments
were performed on “Challanger” BG/P which consists of only one rack (1024 nodes) and is
intended for small test runs. Each BG/P node has a 850 MHz quad-core PowerPC processor
and 2 GB of RAM.

The Cray XE6 has 1,496 compute nodes, each of the compute nodes consisting of two
16-core AMD Opteron 6,272 2.1 GHz Interlagos processors, giving 32 cores in total per node
with 32 GBytes of memory. In total there are 47,872 compute cores and over 46 Terabytes
of memory available on the compute nodes. The Interlagos CPUs implement AMD’s re-
cent “Bulldozer” microarchitecture; each Interlagos socket contains two dies, each of which
contains four so-called modules.

4.2. Intranode performance. The first set of experiments investigates the speed-up of
the incomplete augmented factorization over the triangular solves approach described in Sec-
tion 3.2 and previously used in PIPS-IPM when computing the scenario contribution BT

i K−1
i B

to the Schur complement. The augmented Schur complement technique described in the
previous section was implemented in the PARDISO solver package1; it will be refereed as
PARDISO-SC, whereas we will use the acronym PARDISO for the approach based on trian-
gular solves.

4.2.1. Artificial test scenarios. In this section we extend a PDE-constrained quadratic
program that has been used in [32] to compare the triangular solves approach with the aug-
mented approach. The artificial scenarios provide a test framework for the solution of stochas-
tic elliptic partial differential equation constrained optimization problems. The matrix Ki in
all test scenarios are matrices obtained after a seven-point finite-difference discretization of a
3D Laplacian operator.

Table 4.1 compares runtime in seconds for different numbers of Cray XE6 and BG/P
cores inside PARDISO and PARDISO-SC when computing the Schur complement contribu-
tion BT

i K−1
i B. The matrix Ki used in this experiment has n = 97,336 columns and rows and

1http://www.pardiso-project.org
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TABLE 4.1
Average times in seconds (and Gflop/s in brackets) for different number of Cray XE6 and BG/P cores inside

PARDISO and PARDISO-SC when computing the Schur complement contribution BT
i K−1

i B with n= 97,336 columns
in Ki and 2,921 sparse columns in Bi. The artificial test scenarios in Ki are similar to the discretization of a Laplacian
operator on a 3D cube. The ratio column shows the performance acceleration of the triangular solves with multiple
right hand sides in PARDISO versus the incomplete augmented factorization method in PARDISO-SC.

Number AMD Interlagos BG/P
of cores PARDISO PARDISO-SC Ratio PARDISO PARDISO-SC Ratio

1 454.64 14.43 ( 5.28) 31.50 3,011.78 101.09 (0.72) 29.79
2 301.03 11.53 ( 7.19) 26.23 1,506.97 51.23 (1.42) 29.52
4 202.54 6.35 (13.62) 31.89 905.83 26.30 (2.72) 9.66
8 153.14 4.35 (20.38) 35.20 – – –

16 92.06 2.84 (31.68) 32.41 – – –
32 83.96 1.79 (41.01) 46.90 – – –

TABLE 4.2
Average times in seconds inside PARDISO and PARDISO-SC when computing the Schur complement contribu-

tion BT
i K−1

i B with nc columns in Ki and 0.03 ·nc sparse columns in Bi. The artificial test scenarios in Ki are similar
to the discretization of a Laplacian operator on a 3D cube. The ratio column shows the performance acceleration
of the triangular solves with multiple right hand sides in PARDISO versus the incomplete augmented factorization
method in PARDISO-SC.

nc AMD Interlagos BG/P
PARDISO PARDISO-SC Ratio PARDISO PARDISO-SC Ratio

9,261 0.61 0.02 30.51 2.95 0.13 22.63
27,000 8.32 0.28 29.71 35.85 1.48 24.22
97,336 202.54 6.25 32.40 905.83 26.30 34.84

341,061 11,009.46 508.14 21.70 19,615.17 2,431.31 8.05

is augmented with a matrix Bi with 2,921 columns. The nonzeros in the matrix Bi are ran-
domly generated, with one nonzero element in each column. Table 4.1 shows strong scaling
results for 1 to 32 threads. In fact, the table also shows that the exploitation of sparsity in the
augmented approach is highly beneficial and can already accelerate the overall construction
of the Schur complement matrix C up to a ratio of 31.5 on one core. It is also demonstrated
that the augmented approach results in better scalability on multicores on both the AMD
Interlagos and the BG/P cores.

Table 4.2 demonstrates the impact of the augmented approach for various matrices Ki.
The size of the matrices increases from nc = 9,261 columns up to nc = 341,061 columns.
The matrix Bi always has 0.03 · nc nonzero columns. We always used four Interlagos and
BG/P cores for these experiments. The timing numbers in the table show that the execution
speed always is between a factor of 21.70 and 30.51 depending on the size of Ki on AMD
Interlagos.

Table 4.3 compares the influence of the number of columns in Bi on the performance
of both the augmented approach and triangular solves approach. In this case, the number of
columns and rows in the matrix Ki is always constant with n = 97,336 and, again, we always
used four Interlagos and BG/P cores. We varied the number of columns in Bi from 2,920
columns (k = 0.03) to 19,467 columns (k = 0.20). Although both approaches are mathe-
matically equivalent, the efficiency of the PARDISO-SC implementation is considerable and
compelling for problems with large scenarios and smaller Schur complement matrices with
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TABLE 4.3
Average times in seconds for k · n numbers of sparse columns in Bi inside PARDISO and PARDISO-SC when

computing the Schur complement contribution BT
i K−1

i B. The artificial test problem in Ki is similar to the discretiza-
tion of a Laplacian operator on a 3D cube and always has n = 97,336 columns. The ratio column shows the
performance acceleration of the triangular solves with multiple right hand sides in PARDISO versus the incomplete
augmented factorization method in PARDISO-SC.

k AMD Interlagos BG/P
PARDISO PARDISO-SC Ratio PARDISO PARDISO-SC Ratio

0.03 202.54 6.25 32.40 905.83 26.30 34.80
0.06 392.32 21.85 17.95 1,869.01 100.96 18.51
0.10 667.42 70.22 9.50 2,987.81 280.31 10.66
0.13 952.40 159.90 5.95 3,351.10 556.98 6.02
0.16 1,108.20 233.65 4.75 4,886.56 1,046.43 4.67
0.20 1,334.68 359.32 3.71 5,977.95 1,608.01 3.71

TABLE 4.4
Computation times of the Schur complement contribution BT

i K−1
i Bi on BG/P nodes for stochastic problems

with 6-, 12- and 24-hour horizon. The dimensions of Ki and Bi are shown in Table 4.5. The ratio column shows the
performance acceleration of the triangular solves with multiple right hand sides in PARDISO versus the incomplete
augmented factorization method in PARDISO-SC.

Test BT
i K−1

i B time (sec)
Problem Cores PARDISO PARDISO-SC Ratio

UC6 1 109.21 9.31 11.73
2 58.85 5.58 10.54
4 32.01 4.09 7.82

UC12 1 481.89 58.41 8.25
2 250.77 34.36 7.29
4 136.97 22.50 6.08

UC24 1 1,986.35 273.28 7.26
2 1,090.01 167.47 6.52
4 568.78 94.72 5.99

up to 20% of columns in Bi.

4.2.2. Stochastic optimization problems. We solved 4-hour, 12-hour, and 24-hour
horizon instances (denoted by UC4, UC12 and UC24) of the stochastic unit commitment
with 32 scenarios on 32 nodes of “Challenger” (1 MPI process per node). For PARDISO-
SC we ran with 1, 2, and 4 threads and report the intranode scaling efficiency. When using
PARDISO, PIPS uses the multiple right-hand side feature of the solver in computing K−1

i B.
The execution times represent the average (computed over the scenarios and first 10 IPM it-
erations) time needed for one scenario. We do not list the standard deviation since it is very
small (less than 1%). Table 4.4 summarizes the results.

The shared-memory parallel efficiency of the PARDISO-SC implementation is consid-
erable and compelling for problems with large scenarios (such as UC12 and UC24) that re-
quires one dedicated node per scenario. In addition, the speed-ups over the triangular solves
approach show great potential in achieving our goal of considerably reducing the time to
solution for problems with a large number of scenarios.
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TABLE 4.5
Sizes of Ki and Bi for UC instances with 6-, 12-, and 24-hour horizon.

UC Instance Size Ki # Nonzero Cols. of Bi

UC6 59,478 1,566
UC12 118,956 3,132
UC24 237,912 6,264

4.3. Large-scale runs. Following the great intranode speed-up showed by PARDISO-
SC approach, in this section we investigate and report on the large-scale performance of PIPS
equipped with PARDISO-SC in solving the UC instances. We look at several performance
metrics, that are relevant both to the application (such as time-to-solution) and to the parallel
efficiency of the implementation (such as scaling efficiencies and sustained FLOPS perfor-
mance of PIPS).

The BG/P “Intrepid” experiments solve the UC12 instances with up to 32,768 scenarios
on up to 32,768 nodes (131,072 cores). UC24 problems are too big to fit even 1 scenario per
node for large number of scenarios/nodes. All runs of this section were run in “SMP” mode,
which means one MPI process per node using four cores. All problems solved terminated
with µ < 10−8 and ‖r‖< 10−8, standard termination criteria for interior-point methods [40].

4.3.1. Time to solution. As we mentioned in Section 2, industry practice is to solve
UC procedures under strict “real-time” requirements, which in the case of the UC models
mean solving the problems under 1 hour (size of the time horizon step). To test the real-
time capabilities of PIPS with PARDISO-SC, we solved UC12 instances with an increasingly
larger number of scenarios and nodes (one scenario per node). The total execution times
shown in Table 4.6 are within the requirements. Moreover, the speed-up over the triangular
solves approach is substantial. With the triangular solves approach and using the MA57 as
linear solver, PIPS needed 4 hours 3 minutes to solve a UC4 instance with 8,192 scenarios
and 8,192 nodes on the same architecture. With the augmented factorization implementation
from PARDISO-SC, a UC12 instance with the same number of scenarios can be solved in a
little more than 1 hour using the same number of nodes.

TABLE 4.6
Solve times in seconds, number of iterations, and average time per iteration needed by PIPS to solve UC12

instances with increasingly large number of scenarios. One scenario per node was used in all runs.

No. of Nodes and Solve Time IPM Iterations Average Time per Size of K
Scenarios in minutes Iteration in seconds in billions

4,096 59.14 103 33.57 0.487
8,192 64.72 112 34.67 0.974

16,384 70.14 123 34.80 1.949
32,768 79.69 133 35.95 3.898

Additional reduction in the total execution time can be obtained by reusing solution in-
formation from the UC instance solved previously, a process known as warm-starting. Re-
duction of 30-40% in the iteration count has been reported for interior-point methods applied
to stochastic programming [11]. On the other hand, finding a binary integer solution requires
additional effort, as described in Section 2. While this is future research, we expect the cost
of this phase to be low and not to offset the gains obtained by warm-starting.
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The solve time increases with the number of scenarios because the optimization problems
are larger and require a larger iteration count. However, we observe that even though the size
of the problem increases by 8 times from 4K to 32K scenarios, the iteration count shown in
Table 4.6 increases by less than 30% and shows very good performance of the Mehrotra’s
predictor-corrector despite the extreme size of the problems.

The average cost of an interior-point iteration increases by only 7% from 4K scenarios
to 32K scenarios, mainly because of a small increase in the number of BiCGStab iterations
(more pivot perturbation errors are present and need to be absorbed as the scenario count
increases), and not to communication or load imbalance overhead.

4.3.2. Breakdown of the execution time. In Figure 4.1 we show the execution time
and the three most expensive components of the the execution time for each interior-point
iteration for our largest simulation (UC12 with 32,768 scenarios on 32,768 nodes).
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FIG. 4.1. Breakdown of the execution time per interior-point iteration for UC12 with 32K scenarios on 32K
nodes. The total execution time and its three most expensive components are shown. “Compute SC” represents aver-
age times of computing BT

i K−1
i Bi, “Error absorbtion” shows the cost of BiCGStab procedure and “Communication”

indicates the communication time.

The “Compute SC” displays the time needed by PARDISO-SC to compute the Schur
complement contribution BT

i K−1
i Bi, averaged across all scenarios. “Error absorbtion” indi-

cates the time spent in the BiCGStab procedure that absorbs the errors in K that occurred
because of the pivot perturbations in PARDISO-SC. “Factor SC” represents the time spent
in the dense factorization of C̃. “Communication” depicts the total time spent in internode
communication in both the “Compute-SC” and “Error absorbtion” computational steps.

As can be seen in Figure 4.1, the overhead of the error absorbtion steps is fairly low
(ranges from 10% to 40% of the “Compute SC” step) and plays a crucial role in the speed-
ups in the time to solution of the PARDISO-SC approach over the triangular solves approach
previously implemented in PIPS [20].

The cost increase of the error absorbtion phase with the interior-point iterations is due to
an increase in the number of BiCGStab iterations. This behavior is most likely caused by an
increasingly ill-conditioning of the linear systems Ki (a well-known behavior of interior-point
methods) that amplifies the pivot perturbation errors and, consequently, decreases the quality
of the preconditioner C̃. The average number of BiCGStab iterations ranges from 0 in the
incipient phases of the optimization to 1.5 near the solution.
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The very low cost of the communication (< 0.4 seconds) is the effect of the very fast
BG/P communication collectives routines. Other parallel computing systems may show dif-
ferent behaviors, depending on the speed on the network. However, the next-generation su-
percomputers (such as BG/Q) will operate even faster networks, and so it is very unlikely that
the communication will become a bottleneck on this architecture.

4.3.3. Parallel efficiency. Scalability studies of this section are aimed at providing a
lightweight measurement of the efficiency of PIPS-IPM and an extrapolation basis for the
performance of PIPS-IPM for larger problems.
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FIG. 4.2. “Weak scaling” efficiency plot showing the parallel efficiency of PIPS in solving UC12 instances on
“Intrepid.” The closer to “Perfect scaling” horizonal line, the better, meaning that there is less parallel efficiency
loss.

We first present the so-called weak-scaling efficiency study. It consists of solving in-
creasingly large problems with additional computational resources. In our study we used
UC12 instances, and we increased the number of scenarios and nodes at the same rate (their
ratio is 1). Linear scaling or perfect efficiency is achieved if the run time stays constant.
The efficiency of PIPS-IPM is shown in Figure 4.2. We have used the same UC12 instances
and run times of Table 4.6. The efficiency of the entire optimization process (excluding
problem loading) is about 74%, and the efficiency of the parallel linear algebra is more than
94% percent. In our opinion these are very good parallel efficiencies, in part due to the fast
BG/P collectives (relative to the speed of the cores) and in part to a judicious use of MPI
and numerical linear algebra libraries in our implementation. The reduced efficiency of the
overall optimization process is caused mostly by the increase in the number of optimization
iterations, as we pointed out in Section 4.3.1.

The second efficiency study fixes the size of the problem and increases the number of
computational nodes. This is known as a strong-scaling study. An application scales linearly
if the run time decreases at the same rate the number of nodes increases. In our experiments
we solved the UC12 instance with 32K scenarios on 8K, 16K and 32K nodes (the run on
4K nodes ran out of memory). The strong scaling efficiency displayed in Figure 4.3 is over
75% from 8K to 32K nodes. The slight deterioration in the efficiency is caused mainly by the
dense factorization of the Schur complement and solves with its factors, which is replicated
across all computational nodes. Reducing the cost of this dense linear algebra calculations
(for example, by using GPU acceleration) would greatly improve the strong-scaling efficiency
of our code.

We also report the performance of PIPS-IPM in terms of sustained floating-point oper-
ations per second (Flops). For this experiment we solved UC12 with 4K scenarios on 4K
nodes (1 BG/P rack) and used the Hardware Performance Monitor (HPM) library to count
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FIG. 4.3. “Strong scaling” efficiency plot showing the parallel efficiency of PIPS in solving UC12 instance
with 32k scenarios on 8k, 16k and 32k nodes of “Intrepid” BG/P.

the number of floating-point operations. The sustained Flops rate of PIPS-IPM on 1 rack was
3.37 TFlops, which accounts for 6.05% of theoretical FLOPS peak rate. Inside our code, the
two largest Flops rates were attained by the PARDISO augmented factorization, 4.21 TFlops
(7.55% of peak) and LAPACK symmetric indefinite factorization routine DSYTRF 14.75
TFlops (26.48% of peak). With LAPACK we used ESSL Blue Gene SMP BLAS provided
by the computer manufacturer (IBM). We caution that sustained Flops performance may not
be the best measure of efficiency in our case because a large proportion of computations is
dedicated to sparse linear algebra, which by definition is difficult to vectorize and requires
additional integer arithmetic (fixed-point operations) that are not counted by HPM. However,
this work improved the Flops rate of PIPS-IPM of by a factor of 6 over the previously used tri-
angular solves technique; the improvement comes from the use of the incomplete augmented
factorization, which is considerably less memory bound than triangular solves on multicores
chips.

5. Conclusions. This paper presents a novel technique for the computation of Schur
complement matrices that occur in decomposition schemes for the solution of optimization
problems with dual-block angular structure. This class of structured optimization problems
includes stochastic optimizations problems with recourse, an important class of problems for
addressing the difficult issue of integrating renewable sources of energy into the power grid.
We present and discuss a stochastic model for the real-time unit commitment problem.

Based on an incomplete sparse factorization of an augmented system that is implemented
in PARDISO, the proposed approach is capable of using multicore nodes efficiently, as well
as fully exploiting sparsity. The pivot perturbation errors are not managed for each scenario
independently; instead, we use preconditioned BiCGStab to absorb the errors at once, for
all scenarios. This approach maintains good load balancing even when tens of thousands of
nodes are simultaneously involved in computations. The implementation of the augmented
approach in the PIPS optimization solver showed substantial speed-up over the previous ap-
proach. PIPS solved realistically sized instances (12-hour horizon and state of Illinois power
grid) of the stochastic unit commitment with thousands of scenarios in about 1 hour on the
“Intrepid” BG/P supercomputer.

Our future work will attempt to solve larger horizon problems on modern architectures
such as IBM BG/Q, Cray XK7 and Cray XC30. For example, preliminary runs on a Cray
XC30 architecture indicate that 24-hour stochastic unit commitment relaxations can be solved
in less than 40 minutes. This time can be further reduced by 30-40% by warm-starting the
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relaxation with the solution of stochastic UC instance solved previously. Finding integer
solutions to this class of problems–better than those obtained by rounding–requires additional
algorithmic and implementation developments as outlined in Section 2. While this remains
future research, by the tightness of the relaxation, we expect to be able to find high-quality
integer solutions by solving a small number of warm-started relaxations; hence, the linear-
algebra improvements in this work have reduced solution times for the 24-hour stochastic
unit commitment problem to near-practical levels.
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